Assessment of physical strength from gait: data from the Maasai of Tanzania

Bernhard Fink, Marina L. Butovskaya and Todd K. Shackelford

1Department of Behavioral Ecology, University of Göttingen, Göttingen, Germany
2Hanse-Wissenschaftskolleg, Institute for Advanced Study, Delmenhorst, Germany
3Biocultural Science Information, Biedermannsdorf, Austria
4Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russian Federation
5Higher School of Economics, National Research University, Moscow, Russian Federation
6Social Anthropology Research and Education Center, Russian State University for Humanities, Moscow, Russian Federation
7Department of Psychology, Oakland University, Rochester, MI, USA

In industrialized societies, male gait provides information about physical strength. Male physical strength may be used by men and women to assess the fighting ability of rivals and the quality of potential mates, respectively. Women more than men discriminate between strong and weak walkers when assessing gait attractiveness. We presented videos of British men’s gait—pre-categorized into strong and weak walkers—to male and female members (n = 100) of the traditional Maasai in northern Tanzania in Africa. Maasai men and women judged the gaits of physically strong men less attractive than those of weak men and judged strong walkers to be weaker than weak walkers. These findings counter results from industrialized societies where participants accurately assessed strength from gait, thus arguing against a universal perception of physical strength from gait information.

1. Introduction

Physical strength is a sexually dimorphic (men > women; [1]), heritable trait [2] that correlates positively with measures of male health [3] and sexual behaviour [4] and negatively with male mortality [5]. Thus, physical strength may be a Darwinian fitness indicator in men [6]. Male physical strength can be accurately assessed from facial and body morphology [7–9], vocal cues [10,11] and body movements, such as gait [12,13] and dance [14–16]. Most of these studies have assessed men in industrialized societies, although the significance of male physical strength has also been documented for Hadza hunter–gatherers in Tanzania [17].

Recent studies of the perception of male physical strength (as indexed by handgrip strength, HGS) from gait showed videos of gender-neutral, featureless virtual characters, animated with the motion-captured gait of strong and weak (British) men to (German) male and female panelists. Both sexes judged strong walkers higher on dominance and strength than weak walkers [12]. Women (but not men) judged strong walkers more attractive than weak walkers, and these effects were independent of observers’ physical strength. Thus, body movement alone, independent of facial and body morphology, provided information about male physical strength, which selectively affected men’s and women’s attractiveness assessments of male gait. These findings were recently replicated in samples from Chile, Germany and Russia [13].

It is not known whether these findings (including attractiveness assessments) extend to members of non-WEIRD (Western, Educated, Industrialized, Rich and Democratic [18]) societies. Culture-specific strength
relationships, in contrast to findings from investigations of WEIRD samples, have been reported in traditional societies.

For example, a positive relationship of HGS with the number of living children was documented for women (but not men) of the Himba of Namibia [19]. Butovskaya et al. [20] reported that the patterns of relationships between physical strength and facial shape in the Maasai of northern Tanzania are similar to those reported from investigations in WEIRD samples, although the strength of this relationship varies with age-related mating effort. Here, we present data on Maasai assessments of male physical strength from gait by employing the same stimuli used in investigations of gait perception in industrialized societies [12,13].

2. Material and methods

(a) Gait and strength recordings

Walk movements of 80 British men, 18–42 years, were recorded with an optical motion-capture system (Vicon, Oxford, UK) running Vicon Nexus software as part of a large-scale study on body movement in relation to anthropometry and personality. Participants were recruited primarily from the student population at Northumbria University (UK). No participants reported any injuries that might affect natural movements. They did not wear shoes at recording. Gait recordings were applied to size- and shape-standardized, sex-neutral humanoid characters rendered as 773 × 632 pixel video clips using MOTIONBUILDER (Autodesk, San Rafael, CA). A 3 s (4–5 strides) sequence was digitally isolated from the middle of each walk sequence for presentation in rating studies (figure 1).

Participants’ HGS (kgf; 1 kgf = 9.81 N)) was measured with a hand dynamometer, twice for each hand, and the means of the two left and two right measurements were used for assignment to either the ‘strong’ or ‘weak’ walker group [12,13]. The videos of the 10 strongest (mean HGS (M_{HGS}) = 48.6, s.d. = 3.2) and 10 weakest heterosexual participants (M_{HGS} = 23.8, s.d. = 4.0) were selected for the rating study. Strong and weak walkers differed in HGS but not in the number of strides displayed in the videos. Three repetitions of each participant’s walk sequence were used to construct a new video showing walk movements in a loop.

(b) Gait ratings

The gait videos were shown to randomly selected members of the Maasai population settled around Endulen village in the Ngorongoro Conservation Area in Tanzania [20,21]. Our sample was 51 men and 49 women, 18–39 years (M = 25.6, s.d. = 5.5). Each participant viewed all videos (n = 20) on a 15 inch laptop computer and judged them one after the other for attractiveness and strength, on a three-point Likert-type scale (1 = unattractive/weak, 2 = neither attractive nor unattractive/weak or strong, 3 = attractive/strong). The order of clips was randomized for both attractiveness and strength judgements.

The assignment whether to begin with either attractiveness or strength judgements was also randomized across participants. A still image of the virtual character was presented for illustration of stimuli before the collection of judgements. Participants received instructions in the native Maa language from a local assistant who also collected their verbal judgements. For the analysis, the means of attractiveness and strength assessment (per rater) of strong and weak walkers, respectively, were calculated.

3. Results

Table 1 presents descriptive statistics of attractiveness and strength ratings of strong and weak male walkers. Lilliefors tests revealed deviations from normality for these variables (z > 0.98, p < 0.02). We therefore used non-parametric statistics (Wilcoxon signed-rank test, two-sided) to test for differences between assessments of strong and weak men’s gaits. A difference was detected, such that the gait of strong men was judged lower on attractiveness (z = -3.49, p < 0.001) and strength (z = -5.50, p < 0.001) compared with that of weak men. Performing these tests separately for male and female judges revealed the same pattern of results (men, attractiveness: z = -2.10, p < 0.05; strength: z = -3.45, p < 0.001; women, attractiveness: z = -2.97, p < 0.01; strength: z = -4.32, p < 0.001). A similar pattern was found when considering differences between younger judges (18–29 years, n = 65) and older judges (30–42 years, n = 35), although for older judges, differences in attractiveness assessments did not reach significance (younger, attractiveness: z = -3.02, p < 0.01; strength: z = -4.95, p < 0.001; older, attractiveness: z = -1.80, p = 0.08; strength: z = -2.52, p < 0.05). We present the results in the more familiar Wilcoxon format here, but we also conducted a more advanced analysis (i.e. ordinal logistic regression) on the raw scores of individual assessments as dependent variables.

2. Isen J, McGue M, Iacono, W. 2014. Genetic influences on the development of grip strength in...


